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Impulsive motion of an infinite plate in a compressible 
fluid with non-uniform external flow 

By S .  C .  TRAUGOTT 
Space Systems Division, Martin Marietta Corporation, Baltimore, Maryland 

(Received 8 February 1962) 

The impulsive movement of a plate (Rayleigh problem) is considered for a com- 
pressible flow in which, prior to initiation of the motion, both velocity and 
enthalpy gradients exist normal to the plate. The solution is valid for large times, 
and the external gradients are chosen of such magnitude that their effects enter 
to the same order as displacement effects due to induced vertical velocity. This 
displacement effect is influenced by the external enthalpy gradient. Both in- 
sulated wall and a step change in wall enthalpy are considered. For the insulated 
wall it is found that the part of the displacement solution which is uninfluenced 
by the external gradient requires a term in the logarithm of Reynolds number 
(based on time). This differs in principle from the case for a constant wall en- 
thalpy. Displacement with uniform outside flow affects heat transfer but not 
skin friction, just the opposite from the corresponding results for the steady 
two-dimensional semi-infinite flat plate. The influence of external gradients on 
skin friction, heat transfer and adiabatic wall enthalpy is given. 

1. Introduction 
Boundary-layer flows in which the flow external to the boundary layer is 

rotational have been studied extensively in recent years, both at  the stagnation 
point and for the flat plate. The impetus for these studies has come both from 
practical considerations of hypersonic flow about blunt bodies with curved, 
detached shocks, and from the fact that the problem appears at first to be much 
simpler than it actually is. A comprehensive study of vorticity interaction as 
one of several second-order effects for incompressible flow including a perspec- 
tive of the quite controversial literature can be found in Van Dyke (1960), which 
emphasizes the necessity of accounting properly for the mutual interaction 
between inside and outside flows. 

External vorticity generated by a hypersonic curved shock implies entropy, 
and therefore also temperature, gradients normal to the body surface. Near a 
blunt nose, where the local Mach number is small, this temperature variation is 
not important. However, there can exist regions further downstream where an 
external temperature gradient is important for boundary -layer development. 
On a cylindrical or conical afterbody, locations can be found where the external 
temperature gradient is as large, relative to the thermal boundary-layer tem- 
perature gradient, as the external velocity gradient relative to the momentum 
boundary-layer velocity gradient. Since on the after-body the streamwise 
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pressure gradient may be relatively small, this focuses attention on the com- 
pressible flat-plate boundary layer with non-vanishing shear and heat transfer 
in the outer flow. 

A number of studies of compressible vorticity interaction either ignore or 
fail to account properly for the interaction of inside and outside flow (Li 1955; 
Rogers 1961; Ferri, Zakkay & Ting 1961; and Ovchinnikov 1960). A matched 
inner and outer expansion method for compressible flow is described by Van 
Dyke (1961) in a generalization of his incompressible analysis with application 
to the nose of a blunt body. Maslen (1962) discusses the same problem and presents 
solutions for stagnation point, cylinder and flat plate. The procedure, however, 
becomes quite complicated in general and even in the case of the flat platerecourse 
to numerical integration becomes necessary. 

In  the present study, the effects of external velocity and temperature gradients 
in a viscous, compressible fluid are considered for the much simpler but related 
problem of the infinite, impulsively moved flat plate (Rayleigh problem). The 
Rayleigh problem in conipressible flow resembles boundary-layer flow more 
closely than in incompressible flow since a velocity component normal to the 
plate exists through density variations. Thus coupling between inner and outer 
flow can exist. For the present problem, it is found possible to integrate readily 
the equations and thus to easily explore various features of the interaction, 
provided suitable restrictions are placed on the magnitude of the external 
gradients. 

The impulsively moved compressible Rayleigh plate problem with uniform 
outside flow has been extensively investigated using two alternate approaches. 
First, the problem has been linearized with the assumption of small Mach num- 
ber. This approach was followed by Howarth (1951) and later Hanin (1960) 
who obtained solutions for both large and small values of time elapsed from 
initiation of the motion. This method is not of interest here due to its small 
Mach-number restriction. Alternately, solutions restricted to large time only 
have been obtained by following a ' boundary-layer ' approach treating separately 
and then matching inner and outer flows. This approach was taken by Van Dyke 
(1952) and later Stewartson (1955). The work of Stewartson has recently been 
generalized by Li (1960) to include the effect of surface mass transfer. All these 
studies consider only the insulated wall. These large-time solutions have an 
analogue in the leading-edge shock-wave boundary-layer interaction on a semi- 
infinite flat plate, and just as in that problem, it is important to distinguish here 
between strong a weak interaction. In  weak interaction theory the interaction 
only modifies slightly a basic flow, and the time considered is larger than that 
for strong interaction. The work of Van Dyke (1952) deals with weak interaction, 
that of Stewartson (1955) and Li (1960) with strong interaction. 

Since in the present study the effects of the external gradients are taken to 
be small, the approach of Van Dyke (1952) is followed throughout, modified to 
include external gradients and wall heat transfer with constant wall temperature. 
It is found that the case of the insulated wall and the constant-wall-temperature 
case are basically different, in that a term in the logarithm of the Reynolds 
number appears in the insulated wall problem but not the other. Further, the 
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solution to the former case cannot be completely determined. The present 
insulated results differ considerably from those of Van Dyke (1952) through the 
omission there of certain critical terms.? 

2. Definition of problem 
A flat plate of infinite extent in x moves in its own plane (see figure 1). This 

motion accelerates fluid in the x-direction to velocity u at distance y measured 
normal to the plate. The density p varies through heating by viscous dissipation 
and this induces a velocity v perpendicular to the plate. The motion depends 
on time t ,  having been initiated at  t = 0 by impulsive acceleration of the plate 
from rest to constant velocity U,. 

FIGURE 1. Enthalpy and velocity profiles ; - . -, initial steady values. 

Prior to initiation of the motion, a y-dependent but steady enthalpy i, and 
velocity u, parallel to the plate exist.$ At the surface of the plate, the enthalpy 
i is constant at i, as long as the plate is at rest. After initiation of the motion, the 
surface enthalpy becomes iu,, considered for the present to be constant. 

With viscosity ,u and pressure p, and assuming a Prandtl number of unity, the 

(1) 
equations of motion are a 

@+-(pv) at ay = 0, 

Following Van Dyke (1952) the perpendicular co-ordinate y is transformed by 
a Howarth transformation. In  terms of new variables 

t The suggestion that a logarithmic term in Reynolds number becomes necessary when 
the missing terms are restored is due to Professor Van Dyke. 

$ I n  what follows, subscripts are taken to have the following meanings: aw, adiabatic 
wall conditions; e ,  conditions prior to initiation of the motion; w, conditions at the surface 
of the plate after acceleration to the constant velocity Uo;  0, conditions at the surface of 
the plate prior to initiation of motion. 
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and assuming ,u to be proportional to i and the specific heat to be constant, the 
equations of motion can be written as 

TT -Vo,,, = v - -- 
au a2u 

oay a rpoaul Po a~ 3 

(7 )  
where vo is the kinematic viscosity. 

When the density is constant and also when the flow is steady in time there is 
no vertical velocity, as can be seen from (1). Then from (5) the pressure is con- 
stant, and the right side of both (6) and (7 )  vanishes. In  general, however, this 
is not true. But if ( 5 ) ,  (6) and (7) are made dimensionless with (vOT)$  for the 
vertical co-ordinate, and (vo/T)* for the verticalvelocity, it is found that the ratio 
of right to left sides in all three is vo/ 77; T ,  the reciprocal of a Reynolds number 
based on time. Thus for sufficiently large times the general problem reduces to 
the incompressible one through proper transformation of co-ordinates, as is 
well known in boundary-layer theory. 

For times that are large, but not so large that the right sides can be com- 
pletely neglected, an approximation scheme exists which makes use of the boun- 
dary-layer property that viscous effects are confined to the neighbourhood of 
the plate, and that a considerable extent of fluid exists further out where the 
effects of viscosity are not important. Appropriate solutions are found both in 
the inner and outer regions which are then matched. This procedure will also be 
followed here. We consider at first the first approximation to the outer flow. 

In  the present problem, the outer flow is non-uniform. Since it is steady and 
without vertical velocity, one finds from (6) 

a2u,/aY2 = 0 u, = OY (satisfying u, = 0 at  I’ = 0). 

Equation ( 7 )  becomes 

The outer flow velocities are now taken to be so small that dissipative heating 
in the outer flow is not important. Then 

i, = i, + G I’ (satisfying i, = i, at Y = 0) .  

The stretched co-ordinate Y is related to the physical co-ordinate through this 
initial enthalpy profile. 

It is important to note that this outer flow is ‘inviscid’ only in the sense that 
viscous and heat-conduction terms in the equations of motion vanish. It is not 
necessary to postulate, as has sometimes been done, an outer flow that is rota- 
tional but nevertheless somehow inviscid (because ,u and k, the thermal con- 
ductivity, vanish outside the boundary layer !). 

26-2 
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3. First approximation to inner flow 
Suppose first the time to be so large that the right sides of ( 5 ) ,  (6) and (7) can 

be neglected. Since (6) is then linear, the velocity distribution can be immediately 
written as 

u/Uo = erfcr+(wY/Uo), where 7 = 4Y/(voT)&. (8) 

With the velocity known, ( 7 )  also becomes linear and the external enthalpy 
simply can be added on. However, use is made of the Crocco integral, and this 
requires additional modifications to allow for the outside flow. 

Suppose there exists a generalized Crocco integral 

i = A(Y)+Bu-+uZ, ( 9) 

where B is a constant but A is a function of Y .  If 

A = i , + + u ~ - ( u e / U o ) ( i w - i 0 + ~ U ~ )  and B = ( im- io+&U~)/Uo,  

then it can be verified that (7 )  is satisfied, as long as u, is linear in Y. Thus even 
with non-uniform outside flow a Crocco integral exists. Dropping the u: term 
(slow outer flow), and defining plate Mach number N in terms of the initial 
velocity of sound at the plate surface, (9) can then be written, using (S), as 

(i/io) = l+{(iw/io)- 1+&(y-  1)M2}erfcr-+(y- 1)N2(erfcr)2 

-(wY/Uo) ( y -  1)M2erfcr+(wY/io), (10) 

where y is the ratio of the specific heats. 
These results are not quite as simple as they appear since they are expressed 

in terms of the stretched co-ordinate Y. To transform back, one uses, due to 
constant pressure in this approximation, 

a y p r  = po/p = qi0. 
From (lo), 

Thus both the external velocity and enthalpy gradients appear in a complex 
way in the velocity profile when considered in the physical co-ordinate y, although 
no explicit enthalpy dependence is shown by (8). The external velocity gradient 
appears in the equations coupled to the square of the Mach number; the external 
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enthalpy gradient does not. It may be noted that, although the external profiles 
are differently expressed in y or Y ,  the external gradients at the wall are the 
same expressed in either co-ordinate. 

It is appropriate at this point to consider in what form these gradients enter 
the problem and to make more precise what is meant by their being small. Both 
gradients appear as wY/Uo and 75Y/io. Both factors are taken to be small com- 
pared to unity. Consideration of 6 will be left for Q 4;  for the present we write 

wY/U0 = 2 y ~ T ( i l ~ / U g T ) * .  

A typical value for 27 near the middle of the boundary layer will be of order 
unity. The restriction to large times and small gradients will relate wY/Uo to  
(vo/UgT)* through a particular choice of the product w T .  If this is arbitrarily 
taken to be of order unity, then in the centre of the boundary layer w Y / U ,  will 
be of the same order as (vo/UiT)*.  Now it is well known that effects due to the 
vertical velocity, which have been neglected so far, enter as (vo/U;T)*. The 
vertical velocity itself can be calculated from (11) and the property of the 
co-ordinate transformation that v = ay/aT. There results 

(12) 

For the particular choice of wT made, it is clear that the effects of external 
gradients enter to the same order as displacement effects induced by this vertical 
velocity and therefore that these must also be taken into account in a consistent 
theory. This is done in the following section by first finding the effect of stream- 
line displacement on the outer flow. The resulting pressure is used thereafter, 
together with the first approximations just given above for u, v and i, to evaluate 
the neglected right sides in ( 6 )  and (7 )  and to solve the resulting inhomogeneous 
equations for second-approximation corrections to u, v and i. 

4. Outer flow 
In  the outer portions of the fluid not yet reached by the diffusing viscous zone 

there is, nevertheless, an effect of the plate's motion due to the vertical velocity 
calculated previously. The situation is equivalent to that of motion established 
by a piston moving vertically with velocity 

(obtained from (12) in the limit of large y). 
This motion forms a small disturbance which will be calculated by linearization 

about the non-uniform external flow. In  the outer flow the viscous terms in the 
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equations of motion can be shown to be of order M2(v,/UgT) compared to t8he 
others; the disturbance is therefore considered to be inviscid. 

In  equations (1) to (a), without viscous terms, put 

p = pe+p, u = U,+.ii;, v = 6, p = p o + p ,  i = i,+i. 

Here pe, u, and i, depend on y but not on t .  There results 

9 + 2 ( p e b )  = 0, pe -+v- = 0, 
at ay (E -2) 

From these equations it is possible to obtain after some manipulation 

where u, is the velocity of sound in the initial flow. Thus an acoustic equation 
results for v", with a variable velocity of propagation arising from the non- 
uniform outside enthalpy. The non-uniform outside velocity does not affect this 
phase of the problem. 

Recalling that i, is linear in the transformed variable Y ,  whereas the present 
considerations refer to the physical co-ordinate y, there results for the per- 
turbation velocity the equation 

a 2 6  2i;sy ~ a 2 v "  --u; 1+-- 
a t 2  ( i, 1 @ = O '  

where a, is the velocity of sound at the plate. 
Introducing the transformations 

2Gy 3gp 4 3G/3 4 l+-= 1+-- v"= l + - 7  
20 ( 2i,) ' ( 2 2 , )  4, 

equation (14) becomes 

The last term on the left of (15) represents dispersion of a travelling wave which 
can be thought of as due to reflexions arising in the non-uniform medium. With 
a posteriori justification for a sufficiently small external enthalpy gradient, this 
term will be neglected. 

Then a solution of (15) is an outgoing wave of arbitrary wave form 

which after transforming back and dropping terms of order (Gy/i,)2 gives, as 
a solution to (14), 

v" = ( l + ~ ) f ( t - u ( p y ( l - ~ ) ) .  
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This wave is travelling, unmodified in shape, along a curved ray with changing 
amplitude. The function f is determined at y = 0 from (13). There results 

x {v0 /n  [t - a;l y (1 - 9)] )" - (y - 1) H 2 ) .  (16) 

Once f has been determined, it is found after some manipulation that the ratio 
of the neglected term in (15) to the second term on the left is, neglecting terms 
of order (sSy/io)2 and vo/U:t, 

R = -  

Thus dispersion and resulting distortion in wave shape assume importance only 
in regions away from the wave-front, but even for the largest departure, y = 0, 
the effect is negligible if (Tjaot/io)2 is sufficiently small. (65uot/io)2 < 1 therefore 
will be taken as a measure of the smallness of the external enthalpy gradient, 
so far undefined. Obviously, if (Guot/io)2 is small, then (Wy/io)z is even smaller. 

The combined limitations then lead to the dual restrictions that 

v;/u$ < t 2  < iya;o2, wt = O(1). 

As an interesting aside, it may be mentioned that an external enthalpy varying 
as the fourth power of y leads rigorously to distortionless propagation. 

Once u" is known, 27 may be obtained from the relation 

appt = - yPo aqay. 
There results 

This is the second approximation to the pressure in the outer flow. It contains 
contributions from both the external velocity and enthalpy gradients. Since this 
pressure is ultimately to be used in the approximate evaluation of the right- 
hand terms in (6) and (7) in the boundary layer, the pressure in the boundary 
layer is needed. It turns out that since the inhomogeneous terms are needed only 
to order (vo/UiT)) ,  the pressure in the boundary layer is required correct only 
to this order and is simply 

Thus, to the order carried in this analysis and for the given restrictions on 
time and external gradients, the induced pressure in the boundary layer consists 
of two terms, only one of which contains the external enthalpy gradient. This 
may be called the vorticity-induced pressure. The other term agrees with that 
obtained by Van Dyke (1952) and may be called the conventional displacement 
induced pressure. 
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5. Second approximation to inner flow 
The correction to the velocity (equation (8)) and enthalpy (equation (10)) due 

to boundary-layer displacement is now obtained as follows. 
Let u = u,+Au, where u1 is given by (8), and Au is a small correction. Sub- 

stitute this into (6), with the term on the right calculated from u1 and the pressure 
from (18). This leads to an inhomogeneous heat-conduction equation for Au 
whose solution is found to be 

Similarly, let i = i, + hi, where i, is given by (10). Following the same procedure 
with (7), with the term on the right calculated from u,, i,, the pressure from (18), 
TJ from (12), p from p = poil/ io, and Au from (19), leads to an inhomogeneous 
heat-conduction equation for Ai whose solution eventually is found to be 

+ Y-1 __ M2 e-v' (1 - e-7') 

7l 

Both the velocity correction, (19), and the enthalpy correction, (20), vanish a t  
the wall. Far from the wall the condition is satisfied that inner and outer flow 
match. 

These corrections, as pointed out earlier, are of the same order as the external 
gradient terms in equations (8) and (10). They are expressed in terms of the 
density-transformed co-ordinate Y ,  since y = Y/(voT)*. Since the results must 
eventually be expressed in terms of the physical co-ordinate y, it is necessary to 
correct the transformation equation (1 1) as well. 

Let p = p1 + Ap, where p1 = poio/i, and Ap is a small correction. Making use 
of the equation of state we can write 

where y1 satisfies (11) and 



Impulsive motion of an inJinite plate 409 

Ai/io is given by (20), and Ap/po is the pressure disturbance from (18). Evaluation 
of the integral finally leads to 

I1 +-M2e-7'(1-e-pZ) Y - 1  . ( 2 1 )  
7T 

It remains to correct the vertical velocity, (12). This is again obtained from 
v = ay/aT. Making use of (21) ,  which together with (11)  now gives y correctly 
to the required order, the correction is easily obtained. For simplicity, we give 
only the vertical velocity correction at the boundary -layer edge. This additional 
term, to be added to (13), is 

This completes the second approximation to the inner flow for constant wall 
enthalpy . 

6. Insulated wall 
The analysis so far has been entirely concerned with the case of constant wall 

enthalpy i,. We consider in this section the consequences of insulating the wall. 
For this case it is required that (ai/aY), = 0, and it is easily verified that this 

is satisfied for the first three terms on the right of (10) if 

i , / iO = 1 + Q(y - 1) M2.  

This is then the first-order adiabatic wall temperature. Some difficulty is en- 
countered, however, with the second-order terms due to external gradients in 
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(10) and in the displacement terms from (20). These terms are found to contribute 
to wall heat transfer, and this can be turned off only by adding an appropriate 
solution of the homogeneous heat conduction equation for Ai. When this is done, 
it is found that the part of the displacement term which remains in a uniform 
external flow decays only as 1/7 for large 7. Since boundary-layer effects should 
decay exponentially, another solution is required which, when added, cancels 
this slow decay. This solution contains In ( U2T/vo). After considerable mani- 
pulation there finally results, for velocity and enthalpy distributions, 

- 
(erfc 4 2  7 - erfc 7) - (y  - 1) M2 - e-7' eq' (erfc 42 7 - erfc 7) d7 Js s: wao T -~ 

i0 

Equation (23), when w = 5 = 0,  is identical to that obtained by Van Dyke 
(1952). In  equation (24) it  is to be noted that the external-enthalpy-gradient 
term not connected with displacement is no longer additive. As was the case for 
constant wall enthalpy, the displacement-induced term contains contributions 
from this gradient. Further, in that part of the solution which remains with 
uniform external flow only the first and fourth displacement terms of (24) appear 
in Van Dyke (1952). This discrepancy can be traced to the neglect by Van Dyke 
of first-order density variations in obtaining the inhomogeneous term in (7). 

The constant C appearing in the last term of (24) cannot be determined within 
the framework of the solution. I ts  occurrence is not related to the existence of 
initial external gradients. Second-order displacement corrections for y and v 
also will be indeterminate, and they have not been calculated for the insulated 
case. The non-uniqueness of the solution is analogous to the situation which 
arises when determining higher-order corrections in the incompressible flow over 
a semi-infinite flat plate, as described by Van Dyke (1960). An important differ- 
ence is that the logarithmic term is necessary in the present degree of approxima- 
tion, whereas for the flat-plate boundary layer it does not occur until the next. 
It is of interest to note that in the Rayleigh problem of Hanin (1960) no log- 
arithmic term is encountered due to his linearization. This restricts his solution 
to low Mach numbers such that terms equivalent to M2-terms inside the braces 
of (24) are ignored, and it is just this kind of term which contains the logarithmic 
contribution. 
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7. Results and discussion 

compute both skin friction and heat transfer at  the wall. 
Having obtained consistent expressions for both u and i, we are now ready to 

For the skin friction coefficient Cf write 

where T~ is the wall shearing stress. From (8), (18) and (19) there results 

This expression is equally valid for the heat-transfer case and for the insulated 
wall with first-order adiabatic wall temperature. The first term on the right in 
(25) is the classical constant-density result; it is uninfluenced by Mach number 
or wall enthalpy because of the assumption that is proportional to i, as also 
pointed out by Van Dyke. The second term is a simply additive contribution of 
the external shear which increases wall friction if the external shear has the same 
sign as that near the wall (o < 0). The third term is an interaction term which 
can either increase or decrease skin friction. For iw/io = 1 an increase results 
for an outwardly decreasing external enthalpy . For vanishing 

(iw/io) - 1 + $(y - 1) W ( J 2  - 1) 

this interaction term disappears, Throughout, displacement effects for constant 
wall enthalpy have entered multiplied by this factor. It first appears in (13) and 
subsequently in all displacement-induced terms. These thus all vanish when 

. .  
2 , / t 0  = 1 - +(y - 1) M2(J2 - 1). 

With this wall enthalpy and a uniform external flow, the vertical velocity a t  the 
boundary-layer edge vanishes to both first and second order. For a colder wall 
this induced velocity will be negative. Equation (25) is correct to order vO/U!T. 
Terms involving displacement interaction in a uniform external flow are found 
to cancel out in the expression for skin friction and this effect does not appear. 

The same procedure is followed in evaluating wall heat-transfer. The Stanton 
number is written as 

where qw is the wall heat-transfer and iuw is the adiabatic wall enthalpy. This, of 
course, depends also on second-order effects. I n  fact, from (24) evaluated at  
7 = 0,  there results 
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As an analogue to the blunt-body boundary layer consider w < 0, G < 0. 
With external shear of the same sign as the shear near the wall, the insulated 
wall is made hotter. With external enthalpy decreasing outward the wall is 
made cooler for small M ,  hotter for large M .  The conventional displacement 
effect on the adiabatic wall enthalpy is indeterminate, but it can be seen that the 
effect enters as M5(v0/UiT)4, a surprisingly fast variation with Mach number. 
The corresponding parameter, as obtained by Van Dyke (1952), contains M3. 
Thus the use of constant first-order density previously mentioned eventually 
leads to a missing factor of the square of the Mach number in the adiabatic wall 
enthalpy . 

Since i,, contains an undetermined constant it is convenient to use the first- 
order adiabatic wall enthalpy in the definition of C,. Then, from (lo), (20) 
and (18), 

The last term in the numerator of the expression involving the initial enthalpy 
gradient is a simply additive contribution from the initial heat transfer. For 
iw/io = 1, 

(Y-1)M2 11- 2u(nv,T)+ y - 1 (6 - 4 2 )  (Y - 1)+2 M 2  - 
- i, I S - ( d 2 -  1) (1+ 377 

If the wall enthalpy is maintained at  the first-order adiabatic wall enthalpy or 
less, then with negative external gradients the velocity gradient increases heat 
transfer. Heat transfer is increased by the enthalpy gradient at  large M and 
decreased for small M .  The conventional displacement effect can either increase 
or decrease wall heat transfer. For i&, = 1 an increase results. For 

iw/io = 1 - 4(~ - 1)  M2( J2 - l), 

there is no contribution at  all. It can also be readily shown from (25 )  and (27) 
that considerable reductions in both vorticity and conventional displacement 
interaction occur for a cold wall (iw/io = 0) compared to a hot wall 

(iw/io = 1 + Q(y - 1) M2). 

We may at  this point compare resulk with steady, two-dimensional flow over 
a semi-infinite flat plate. In  the latter case weak interaction theory with uniform 
external flow shows that the effect of boundary-layer displacement increases 
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u/ Do 

M = 3, ( V ~ / U ~ T ) ~  = 0.01; -.-, initial profile. 
FIGURE 2. Velocity profiles for various wall enthalpies, fixed time, 

i/i, 

FIGURE 3. Enthalpy profiles for various wall enthalpies, fixed time, 
M = 3, (vo /UtT)*  = 0.01; -.-, initial profile. 
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uo 
FIGURE 4. Velocity profiles for various times, fixed wall enthalpy, 

$1 = 3, i,/i, = 1 ; -. -, initial profile. 

I 0.05 

ili, 
FIGURE 5. Enthalpy profiles for various times, fixed well enthalpy, 

M = 3, i&, = 1; -.-, initial prome. 
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skin friction but does not influence heat transfer. This is just the opposite from 
what is found here with uniform flow (see equations (25) and (27) witho = i% = 0) .  
Thus higher-order effects can be quite different in various apparently related 
cases. This has also just been seen in the nature of the conventional displacement 
effect for contant wall enthalpy and the insulated Rayleigh plate. Comparison 
with the effects of the external gradients obtained by Maslen (1962) for the flat 
plate again shows different and much more complex behaviour in the latter case. 

Finally, some velocity and enthalpy profiles are presented as a function of the 
normalized physical co-ordinates y/2(v0 T)*. For the insulated wall, the in- 
determinacy in the solution prevents display of any profiles. For the heat- 
transfer case, M = 3 and v0o/Ut = vo&i/Uoio = - 5 x have been selected. 
For illustrative purposes figures 2 and 3 show velocities and enthalpies for various 
values of iw/io for (v,/UgT)* = 1 x 10-2. Figures 4 and 5 indicate these profiles 
for &/io = 1.0 with various values of (vo/UET)*. In  all cases the initial profiles 
are also indicated. 

8. Conclusions 
The impulsively moved compressible Rayleigh plate in a non-uniform initial 

flow has been considered for two cases, that of constant wall enthalpy with heat 
transfer and that of an insulated wall. 

It is found that skin friction contains a simply additive contribution from the 
initial shear and wall heat transfer contains a simply additive contribution from 
initial heat transfer. However, displacement-induced effects are influenced by 
the initial enthalpy gradient and this leads to interaction terms which affect 
skin friction, heat transfer and adiabatic wall enthalpy. These terms can either 
increase or decrease skin friction and wall heat-transfer because the induced 
velocity normal to the plate can be either positive or negative depending on 
surface enthalpy and Mach number. If the initial heat transfer is away from the 
wall, skin friction is increased for the insulated plate. Adiabatic wall enthalpy 
then decreases due to initial enthalpy gradient at  low Mach number and increases 
at  high Mach number. It is increased by initial shear if this is of the same sign 
as wall shear. 

That part of the displacement-induced effect which remains with uniform 
initial flow affects heat transfer but not skin friction to the order considered. This 
is just the opposite of the case of weak interaction for a two-dimensional semi- 
infinite flat plate. This conventional displacement can also either increase or 
decrease wall heat-transfer. 

The insulated case and the constant wall enthalpy case differ principally in 
that a logarithmic term in Reynolds number (based on time) enters into con- 
ventional displacement for the insulated problem but not for the other. This 
term is accompanied by an undetermined constant which makes the adiabatic 
wall enthalpy indeterminate. 

The author is grateful to Dr S. H. Maslen for innumerable discussions. 
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